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Definition

“In control theory, observability is the ability to understand
what is going on in the inner workings of a system just by

observing it from the outside.”



Translate!

Your software should explain itself and what is doing!



Three (+1) Pillars of Observability

e Logs
e Metrics
® J[races

e FEvents



Logs




Logs

e Structured logging vs. non-structured logging

e Structured logs can have any arbitrary shape and size.

e Usually used for debugging purposes and tracking down issues!

e [Easy to implement.



Shortcomings

e |ogs are very expensive at scale!

e They cannot be used for real-time computational purposes.

e Logs are also hard to track across different and distributed processes.
e You need know what to look for ahead of the time (know unknowns vs.

unknown unknowns).



Standards

e APIs: JSON logging

e Log Aggregators: Fluentd, Logstash, Filebeat
e | og Databases: Elasticsearch, ...

e Dashboards: Kibana, ...



Metrics




Metrics

e Metrics are time-series data (regular) with low cardinality.

e They are aggregated by time.

e Metrics are used for real-time monitoring purposes.

e Metrics are very good at taking the distribution of data into account.
e Using metrics, we can implement SLIs and SLOs.

e Alerting (on SLO violation) is possible with metrics.



Service-Level Indicators
e An SLlis a service level indicator—a carefully defined quantitative
measure of some aspect of the level of service that is provided.

e Examples:

o request latency

o system throughput
O error rates

o availability

o durability.



Service-Level Objectives

e An SLO is a target value or range of values for a service level that is
measured by an SLI.

e Examples:
o 99.9% (3 nines) of requests respond in 10ms or better.

o 99.999 (5 nines) of requests are processed with 5Mb/s or better.



Shortcomings
e Metrics CANNOT be broken down by high-cardinality dimensions

(unique ids such user ids and so forth).



Standards

e APIs: OpenMetrics, ...
e C(Clients: Prometheus, ...
e Metrics Databases: Prometheus, ...

e Dashboards: Grafana, ...



Traces




Traces
e Traces are used for debugging and tracking requests across different
processes and services.

e They can be used for identifying performance bottlenecks.



Compare Dependencies

Jaeger Ul Seart

v chaostoolkit: Users should keep their superpower when powersource loses 50% of its fleet %® View Options

December 4, 2018 10:32 AM 7.14s 3 7 t 27

7.14s

Service & Operation v >V¥>» oms 1.78s 3.57s 5.35s 7.14s

v | chaostoolkit Users shou

v | chaostoolkit Super powers must not change 765.29ms | chaostoolkit::Super powers must not change
v | chaostoolkit users-must-receive-superpowe
v | chaostoolkit ask-or-suf
v | superpower superpowerindex
v | superpower fetch character |
pOWersource powersource index

chaostoolkit users-must-have-ker r-superpower

v | chaostoolkit wetho:

chaostoolkit termi
v | chaostoolkit fetch-another-herc

v | superpower superpowerinds

v | superpower fetcn

POWErSoUrce powersource.index
v | chaostoolkit fetch-anoth
v | superpower superpowerinde |
v | superpower fetch character |
POWErSOUrce powersource.index
| chaostoolkit ietch-superpowe
chaostoolkit fetch-po ource-Ic
v | chaostoolkit Super powers must not change

v | chaostoolkit users-must-

v | chaostoolkit ask-for-superp
v | superpower superpowerind:
| superpower fetch character
| chaostoolkit users-must-have-kept-their-superpower

chaostoolkit Rrolibacks



Shortcomings

e Due to their very data-heavy nature, traces need to be sampled.

e Tracing data are not optimized for aggregation.

e Due to sampling, we cannot precisely know about the distribution of

data (detecting outliers is very hard).



Standards

e APIs: OpenTracing
e Implementations: Jaeger, ZipKin

e Dashboards: Jaeger, ...



Events




Events

e Events are time-series (irregular) data.

e They occurin temporal order, but the interval between occurrences
are inconsistent and sporadic.

e Events are used for reporting and alerting on important or critical

events such as errors, crashes, etc.



Shortcomings

e \ery limited use cases



SaasS

® Rollbar
e Airbrake

e Sentry



Demo




DRY!

e QObserving microservices is difficult!
e Microservices are about a lot of repeating yourself!
e Don’t repeat yourself!

e Core libraries should give us insights from inside out!



Rethinking Observability




Wait!

Does this sound right?



What’s Wrong?

e Logs, metrics, and traces each prematurely optimize one thing and

comprise another thing based on a premise upfront.



You Don’t Want!
e You don’t want to write duplicate data into three different places.
e You don’t want to copy-paste IDs from tool to tool trying to track down
a single problem!
e You don’t want to pay for three (four) different services doing almost

the same thing!



You Want!

e You want one source of truth for your observability data.

® You want to be able to look at high-level dashboards, spot anomalies,
and zoom in to get detailed information as needed.

e You want your observability cost be 10% to 30% of your total

infrastructure cost.



Can We Keep All The Data?

e Itis not practical to keep all the data!

® You are either throwing away data at ingestion time by aggregating or
you are throwing away data after that by sampling.

e Observability can be incredibly cost-effective by using intelligent

sampling.



Solutions

e LightStep (https:/lightstep.com)

e Honeycomb (https:/www.honeycomb.io)

e Elastic APM (https:/www.elastic.co/products/apm)


https://lightstep.com/
https://www.honeycomb.io/
https://www.elastic.co/products/apm

More Resources

e hitps://www.youtube.com/watch?v=EJV_CqigqlOE

e hitps://www.youtube.com/watch?v=8u8A-bhhiSg

e htips://www.infog.com/presentations/google-microservices


https://www.youtube.com/watch?v=EJV_CgiqlOE
https://www.youtube.com/watch?v=8u8A-bhhlSg
https://www.infoq.com/presentations/google-microservices/

Questions?




