An Overview of Observability

v0.2.0

93 BILLION LIGHT YEARS
28 BILLION PARSECS

OBSERVABLE
UNIVERSE LIMIT

Definition

“In control theory, observability is the ability to understand
what is going on in the inner workings of a system just by

observing it from the outside.”

Translate!

Your software should explain itself and what is doing!

Three (+1) Pillars of Observability

e Logs
e Metrics
® J[races

e FEvents

Logs

Logs

e Structured logging vs. non-structured logging

e Structured logs can have any arbitrary shape and size.

e Usually used for debugging purposes and tracking down issues!

e [Easy to implement.

Shortcomings

e |ogs are very expensive at scale!

e They cannot be used for real-time computational purposes.

e Logs are also hard to track across different and distributed processes.
e You need know what to look for ahead of the time (know unknowns vs.

unknown unknowns).

Standards

e APIs: JSON logging

e Log Aggregators: Fluentd, Logstash, Filebeat
e | og Databases: Elasticsearch, ...

e Dashboards: Kibana, ...

Metrics

Metrics

e Metrics are time-series data (regular) with low cardinality.

e They are aggregated by time.

e Metrics are used for real-time monitoring purposes.

e Metrics are very good at taking the distribution of data into account.
e Using metrics, we can implement SLIs and SLOs.

e Alerting (on SLO violation) is possible with metrics.

Service-Level Indicators
e An SLlis a service level indicator—a carefully defined quantitative
measure of some aspect of the level of service that is provided.

e Examples:

o request latency

o system throughput
O error rates

o availability

o durability.

Service-Level Objectives

e An SLO is a target value or range of values for a service level that is
measured by an SLI.

e Examples:
o 99.9% (3 nines) of requests respond in 10ms or better.

o 99.999 (5 nines) of requests are processed with 5Mb/s or better.

Shortcomings
e Metrics CANNOT be broken down by high-cardinality dimensions

(unique ids such user ids and so forth).

Standards

e APIs: OpenMetrics, ...
e C(Clients: Prometheus, ...
e Metrics Databases: Prometheus, ...

e Dashboards: Grafana, ...

Traces

Traces
e Traces are used for debugging and tracking requests across different
processes and services.

e They can be used for identifying performance bottlenecks.

Compare Dependencies

Jaeger Ul Seart

v chaostoolkit: Users should keep their superpower when powersource loses 50% of its fleet %® View Options

December 4, 2018 10:32 AM 7.14s 3 7 t 27

7.14s

Service & Operation v >V¥>» oms 1.78s 3.57s 5.35s 7.14s

v | chaostoolkit Users shou

v | chaostoolkit Super powers must not change 765.29ms | chaostoolkit::Super powers must not change
v | chaostoolkit users-must-receive-superpowe
v | chaostoolkit ask-or-suf
v | superpower superpowerindex
v | superpower fetch character |
pOWersource powersource index

chaostoolkit users-must-have-ker r-superpower

v | chaostoolkit wetho:

chaostoolkit termi
v | chaostoolkit fetch-another-herc

v | superpower superpowerinds

v | superpower fetcn

POWErSoUrce powersource.index
v | chaostoolkit fetch-anoth
v | superpower superpowerinde |
v | superpower fetch character |
POWErSOUrce powersource.index
| chaostoolkit ietch-superpowe
chaostoolkit fetch-po ource-Ic
v | chaostoolkit Super powers must not change

v | chaostoolkit users-must-

v | chaostoolkit ask-for-superp
v | superpower superpowerind:
| superpower fetch character
| chaostoolkit users-must-have-kept-their-superpower

chaostoolkit Rrolibacks

Shortcomings

e Due to their very data-heavy nature, traces need to be sampled.

e Tracing data are not optimized for aggregation.

e Due to sampling, we cannot precisely know about the distribution of

data (detecting outliers is very hard).

Standards

e APIs: OpenTracing
e Implementations: Jaeger, ZipKin

e Dashboards: Jaeger, ...

Events

Events

e Events are time-series (irregular) data.

e They occurin temporal order, but the interval between occurrences
are inconsistent and sporadic.

e Events are used for reporting and alerting on important or critical

events such as errors, crashes, etc.

Shortcomings

e \ery limited use cases

SaasS

® Rollbar
e Airbrake

e Sentry

Demo

DRY!

e QObserving microservices is difficult!
e Microservices are about a lot of repeating yourself!
e Don’t repeat yourself!

e Core libraries should give us insights from inside out!

Rethinking Observability

Wait!

Does this sound right?

What’s Wrong?

e Logs, metrics, and traces each prematurely optimize one thing and

comprise another thing based on a premise upfront.

You Don’t Want!
e You don’t want to write duplicate data into three different places.
e You don’t want to copy-paste IDs from tool to tool trying to track down
a single problem!
e You don’t want to pay for three (four) different services doing almost

the same thing!

You Want!

e You want one source of truth for your observability data.

® You want to be able to look at high-level dashboards, spot anomalies,
and zoom in to get detailed information as needed.

e You want your observability cost be 10% to 30% of your total

infrastructure cost.

Can We Keep All The Data?

e Itis not practical to keep all the data!

® You are either throwing away data at ingestion time by aggregating or
you are throwing away data after that by sampling.

e Observability can be incredibly cost-effective by using intelligent

sampling.

Solutions

e LightStep (https:/lightstep.com)

e Honeycomb (https:/www.honeycomb.io)

e Elastic APM (https:/www.elastic.co/products/apm)

https://lightstep.com/
https://www.honeycomb.io/
https://www.elastic.co/products/apm

More Resources

e hitps://www.youtube.com/watch?v=EJV_CqigqlOE

e hitps://www.youtube.com/watch?v=8u8A-bhhiSg

e htips://www.infog.com/presentations/google-microservices

https://www.youtube.com/watch?v=EJV_CgiqlOE
https://www.youtube.com/watch?v=8u8A-bhhlSg
https://www.infoq.com/presentations/google-microservices/

Questions?

