
An Overview of Observability

v0.2.0





Definition

“In control theory, observability is the ability to understand 

what is going on in the inner workings of a system just by 

observing it from the outside.”



Translate!

Your software should explain itself and what is doing!



Three (+1) Pillars of Observability

● Logs

● Metrics

● Traces

● Events



Logs



Logs

● Structured logging vs. non-structured logging

● Structured logs can have any arbitrary shape and size.

● Usually used for debugging purposes and tracking down issues!

● Easy to implement.



Shortcomings

● Logs are very expensive at scale!

● They cannot be used for real-time computational purposes.

● Logs are also hard to track across different and distributed processes.

● You need know what to look for ahead of the time (know unknowns vs. 

unknown unknowns).



Standards

● APIs: JSON logging

● Log Aggregators: Fluentd, Logstash, Filebeat

● Log Databases: Elasticsearch, …

● Dashboards: Kibana, ...



Metrics



Metrics

● Metrics are time-series data (regular) with low cardinality.

● They are aggregated by time.

● Metrics are used for real-time monitoring purposes.

● Metrics are very good at taking the distribution of data into account.

● Using metrics, we can implement SLIs and SLOs.

● Alerting (on SLO violation) is possible with metrics.



Service-LeveL Indicators

● An SLI is a service level indicator—a carefully defined quantitative 

measure of some aspect of the level of service that is provided.

● Examples:

○ request latency
○ system throughput
○ error rates
○ availability
○ durability.



Service-LeveL Objectives

● An SLO is a target value or range of values for a service level that is 

measured by an SLI.

● Examples:

○ 99.9% (3 nines) of requests respond in 10ms or better.

○ 99.999 (5 nines) of requests are processed with 5Mb/s or better.



Shortcomings

● Metrics CANNOT be broken down by high-cardinality dimensions 

(unique ids such user ids and so forth).



Standards

● APIs: OpenMetrics, ...

● Clients: Prometheus, …

● Metrics Databases: Prometheus, …

● Dashboards: Grafana, ...



Traces



Traces

● Traces are used for debugging and tracking requests across different 

processes and services.

● They can be used for identifying performance bottlenecks.





Shortcomings

● Due to their very data-heavy nature, traces need to be sampled.

● Tracing data are not optimized for aggregation.

● Due to sampling, we cannot precisely know about the distribution of 

data (detecting outliers is very hard).



Standards

● APIs: OpenTracing

● Implementations: Jaeger, ZipKin

● Dashboards: Jaeger, ...



Events



Events

● Events are time-series (irregular) data.

● They occur in temporal order, but the interval between occurrences 

are inconsistent and sporadic.

● Events are used for reporting and alerting on important or critical 

events such as errors, crashes, etc.



Shortcomings

● Very limited use cases



SaaS

● Rollbar

● Airbrake

● Sentry



Demo



DRY!

● Observing microservices is difficult!

● Microservices are about a lot of repeating yourself!

● Don’t repeat yourself!

● Core libraries should give us insights from inside out!



Rethinking Observability



Wait!

Does this sound right?



What’s Wrong?

● Logs, metrics, and traces each prematurely optimize one thing and 

comprise another thing based on a premise upfront.



You Don’t Want!

● You don’t want to write duplicate data into three different places.

● You don’t want to copy-paste IDs from tool to tool trying to track down 

a single problem!

● You don’t want to pay for three (four) different services doing almost 

the same thing!



You Want!

● You want one source of truth for your observability data.

● You want to be able to look at high-level dashboards, spot anomalies, 

and zoom in to get detailed information as needed.

● You want your observability cost be 10% to 30% of your total 

infrastructure cost.



Can We Keep All The Data?

● It is not practical to keep all the data!

● You are either throwing away data at ingestion time by aggregating or 

you are throwing away data after that by sampling.

● Observability can be incredibly cost-effective by using intelligent 

sampling.



Solutions

● LightStep (https://lightstep.com)

● Honeycomb (https://www.honeycomb.io)

● Elastic APM (https://www.elastic.co/products/apm)

https://lightstep.com/
https://www.honeycomb.io/
https://www.elastic.co/products/apm


More Resources

● https://www.youtube.com/watch?v=EJV_CgiqlOE

● https://www.youtube.com/watch?v=8u8A-bhhlSg

● https://www.infoq.com/presentations/google-microservices

https://www.youtube.com/watch?v=EJV_CgiqlOE
https://www.youtube.com/watch?v=8u8A-bhhlSg
https://www.infoq.com/presentations/google-microservices/


Questions?


