
An Overview of 
GraphQL
v0.1.0

April 30, 2019



Some History

● Why and How is GraphQL created?



Monolithic Architecture



Microservices Architecture



Where are Joins in Microservices?!

● If you are doing joins in your application, you are doing it 

wrong!

● Clients make more requests to get all data they want:

● An Example:

○ GET /api/v1/teams/1234

○ GET /api/v1/members?teamId=1234



Background

● GraphQL is the response to challenges created by 

microservices.

● GraphQL was developed by Facebook in 2012 and open 

sourced in 2015.

● Other companies have created similar solutions (Netflix’s 

Falcor).



Who Uses GraphQL?

● Facebook
● GitHub
● Twitter
● Airbnb
● Pinterest
● Shopify
● Coursera
● https://graphql.org/users

https://graphql.org/users


What is GraphQL?

● GraphQL is a query language for your API.

● GraphQL is also a runtime for executing queries. 



GraphQL in Action!

● https://www.graphqlhub.com

https://www.graphqlhub.com


GraphQL Benefits



GraphQL is Simple!

● One of the challenges with REST API is input & output values!

○ Input: http verbs, url path, headers, query params, body

○ Output: status code vs. headers vs. response body

● With GraphQL you only send a single query.

○ It can be over tcp, http, protocol buffers, etc.

● Your query shape is also your response shape!



No Underfetching, No Overfetching!

● With REST API,
○ clients have to make a series call (underfetching)
○ a lot of unwanted data are also fetched (overfetching)
○ what does this mean for mobile apps?

● With GraphQL,
○ You only get what you exactly need in a single request!



GraphQL is Typed

● One of the biggest challenges with REST API is interpretation!

○ http status codes!

○ undefined vs. null vs. empty

○ required vs. non-required values

● GraphQL is a strongly typed language!

○ nullable and non-nullable types



Your Data Model is a Graph!

● Each non-scalar (object) type is a node.

● The non-scalar types on your queries are the edges.

● Each query represents a path in your data model graph.



No API Versioning

● Deprecating and versioning REST APIs are challenging!

○ When we don’t have a type system, and

○ we don’t have any control over the response is returned,

■ any change could be a breaking change!

● GraphQL is an ever-evolving and versionless API paradigm.

○ Avoid backward-incompatible changes.

○ Old fields can be easily deprecated with a description.



Query Validation

● GraphQL queries can be pre-determined and validated thanks 

to the GraphQL type system (schema).

● When implementing a back-end or a front-end GraphQL 

application, many problems and mistakes can be detected 

without waiting for runtime errors and debugging!



API Introspection

● We can discover a GraphQL API dynamically or 

programmatically.

● We can access the documentation of a GraphQL API using 

introspection.

● We can even introspect on the introspection system itself!



Schema Language



Schema Language

● It is a type language for defining a type system!

○ You basically define a set of types!

● Every schema starts as follows:

schema {

  query: Query

  mutation: Mutation

}



The Query Type

● Query is a special type that defines your queries!

type Query {

  team(id: ID!): Team

  teams: [Team!]!

  members(teamId: ID!): [Member!]

}



The Mutation Type

● Mutation is a special type that defines your mutation queries!

type Mutation {

  addTeam(name: String!): Team!

  addMember(teamId: ID!, name: String!, email: String): Member!

}



Scalar Types

● ID

● Int

● Float

● String

● Boolean



Enumeration Types

● Enumeration types are a special kind of scalar type!

enum Status {

  Pending

  Approved

  Cancelled

}



List and Non-Null

● myField: [String]

● myField: [String!]

● myField: [String]!

● myField: [String!]!



Object Types

type Team {

  id: ID!

  name: String!

  members: [Member!]

}

type Member {

  id: ID!

  team: Team!

  name: String!

}



Arguments

● Every GraphQL field can have zero or more arguments.

type Car {

  id: ID!

  model: String!

  length(unit: LengthUnit = METER): Float

  weight(unit: WeightUnit = Pound): Float

}



Input Types

● Input types can only be used for arguments.

type Mutation {

  addMember(in: MemberInput!): Member!

}

input MemberInput {

  teamId: ID!

  name: String!

  email: String

}



Interfaces

interface Member {
  id: ID!
  name: String!
}

type Employee implements Member {
  id: ID!
  name: String!
  employeeId: ID!
}
type Customer implements Member {
  id: ID!
  name: String!
  customerId: ID!
}



Union Types

union SearchResult = Profile | Page

Type Profile {

  id: ID!

  name: String!

}

type Page {

  id: ID!

  name: String!

  business: String!

}



Subscriptions

● Clients can open a long-lived connection to back-end.
● When subscribing, clients specify:

○ What events they are interested in, and
○ What query should be executed when events occur.

● The server maps the inputs to an event stream and executes 
the query when the events trigger. 

● This model avoids overpushing/underpushing but requires a 
GraphQL backend.



Subscriptions



Resolvers

● For each field on each type, you define a resolver function.

● Resolver functions collectively implement your GraphQL API.



Resolver Example

Query: {

  team(obj, args, context, info) { … }

}

Mutation: {

  addTeam(obj, args, context, info) { … }

}

Team: {

  id:   t => t.id

  name: t => t.name

}



Query Language



Fields

{

  teams {

    name

    members {

      name

    }

  }

}



Arguments

{

  members(teamId: "1234") {

    name

    team {

      name

    }

  }

}



Aliases

{

  firstMember: members(teamId: "1234") {

    fullName: name

  }

  secondMember: members(teamId: "5678") {

    fullName: name

  }

}



Operation Names

query TeamsAndMembers {

  teams {

    name

    members {

      name

    }

  }

}



Mutations

mutation AddMember{

  addTeam(teamId: "1234", name: "Milad", email: "milad@example.com"){

    id

    name

  }

}



Variables

mutation AddMember($in: MemberInput!){
  addTeam(input: $in){
    id
    name
  }
}

{
  "in": {
    "teamId": "1234",
    "name": "Milad",
    "email":"milad@example.com"
  }
}



Directives

query TeamsAndMembers($withMembers: Boolean!) {
  teams {
    name
    members @include(if: $withMembers) {
      name
    }
  }
}

{
  "withMembers": false
}



Fragments

query {
  firstMember: members(teamId: "1234") {
    ... infoFields
  }
  secondMember: members(teamId: "1234") {
    ... infoFields
  }
}

fragment infoFields on Team {
  id
  name
}



Inline Fragments

query FindFood {
  search(ingredient: "protein") {
    __typename
    ... on Fruit {
      name
    }
    ... on Meal {
      name
      calories
    }
    ... on Drink {
      brand
    }
  }
}



Best Practices



Think in Graph!

● Think of your data model (resources) and your API as a graph!

● “With GraphQL, you model your business domain as a graph”

● You need a common terminology for choosing names that 

make sense (intuitive APIs)!



Transport Protocol

● HTTP

○ GET https://api.example.com/graphql?query={ …}

○ POST https://api.example.com/graphql

● GZIP Encoding

○ Accept-Encoding: gzip

● JSON format for response



Pagination

● You can use any pagination model for your GraphQL schema

● Different pagination models enable different client capabilities.

● Implement pagination from day zero!



Authentication and Authorization

● Authentication and authorization should be implemented in 

business logic layer.

● The business logic layer should act as the single source of 

truth for enforcing business domain rules.



Authentication and Authorization



GraphQL Challenges



Caching

● Caching in REST is easy!

○ Resources are represented by uuid or guid.

○ The response for each resource has the same fields.

● Similarly, caching gRPC requests are fairly easy!

● In GraphQL, the response for the same query on the same 

resource id can have many different shapes!

● GraphQL community is putting a lot effort on this topic!



Rate Limiting and Profiling

● REST and gRPC are easy to measure and profile!

○ Each request has a known (usually fixed) cost.

● The cost of a GraphQL request depends on the query!

○ it may need one call to database, or

○ it may need tens of calls to different databases!



Schemas in Microservices!

● In microservices world, we want our microservices to fully and 

independently own their slice of schema.

● Distributing and decentralizing GraphQL schemas in 

microservices architecture is a fun challenge!

● Load balancing complexity depends on the transport layer.

● Routing cannot happen in transport layer!

○ The router should understand the GraphQL schema!



Schema Stitching

● Schema stitching is the art of composing a single unified 

GraphQL schema from multiple independent schemas.

○ creating a single connected graph from multiple 

disconnected graph!

● What is hard about stitching?

● The stitcher should take care of routing GraphQL queries.



Stitching by Convention

Type Team {
  id: ID!
  name: String!
}

Type Member {
  id: ID!
  teamId: ID!
  name: String!
  email: String
}

Type Team {
  id: ID!
  name: String!
  members: [Member!]
}

Type Member {
  id: ID!
  teamId: ID!
  team: Team!
  name: String!
  email: String
}



Stitching by Configuration

Type Team {
  id: ID!
  name: String!
}

Type Member {
  id: ID!
  teamId: ID!
  name: String!
  email: String
}

extend type Team {
  members: [Member!]
}

extend type Member {
  team: Team!
}
...
Resolvers = {
  Team: {
    members: ...
  }
  Member: {
    team: ...
  }
}



Decentralizing by Choreography!

Type Team {
  id: ID!
  name: String!
  org: Organization!  @Link org-service
  members: [Member!]  @Link member-service
}

Type Member {
  id: ID!
  teamId: ID!
  team: Team!  @Link team-service
  name: String!
  email: String
}



A Practical Approach github.com/moorara/microservices-demo

http://github.com/moorara/microservices-demo


GraphQL Implementations



Runtime (Back-End)

● Go: graphql, graphql-go, gqlgen, ...

● Node.js: graphql-js, graphql-tools, apollo-server, ...

● Rust, Elixir, Clojure, Ruby, Python, Scala, Java, C#, PHP, ...



Query Language (Front-End)

● Relay (react-relay)
○ High learning curve
○ Very opinionated (React and React Native ecosystem)
○ Query validation, optimization, and compiling

● Apollo (apollo-client)
○ Framework-agnostic (React, Vue, Ember, iOS, Android, …)
○ Focused on ease of use and very flexible
○ Subscription support via WebSockets




